Data visulization helps indentify patterns and trends in large datasets.

There are 3 broder categories of visualization.

Univariate Visualization

Univariate visualisation is about visualise single attribute. First we need to find the data type of an and then we can visualise them. There are 4 data types: categorical nominal, categorical ordinal, metric discrete and metric continoues. Based on the data type we can choose appropriate visualization

Consider the following dataset about t-shirts.


#Below we create the above dataset using random function. Let us generate a dataframe for 1000 randomly generate t-shirt information.
import random
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import string

import seaborn as sns

print('matplotlib: {}'. format(  matplotlib. __version__)) 

sizes = ["S", "M", "L", "XL","XXL"]
colors = ["black", "red", "white", "blue"]

#Below we create functions to generate a probable value for each column attribute randomly.
def generate_random_id():
    return str(random.randrange(100,999))+random.choice(string.ascii_uppercase)

def generate_random_size():
    return random.choices(sizes,weights=[0.15, 0.32, 0.28,0.20,0.05])[0]

def generate_random_color():
    return random.choice(colors)

def generate_random_price():
    return round(random.uniform(0, 10000),2)

def generate_random_stock():
    return random.randrange(12,2345)
    
total_no_of_tshirts=1000
data = []
for i in range(total_no_of_tshirts):
  row = []
  row.append(generate_random_id())
  row.append(generate_random_size())
  row.append(generate_random_color())
  row.append(generate_random_price())
  row.append(generate_random_stock())
  data.append(row)
df=pd.DataFrame(data,columns = ['id', 'size','color','price','stock'])
print(df)

Output,

matplotlib: 3.5.3
       id size  color    price  stock
0    885J    S    red  1004.74   1642
1    422W  XXL  black   629.46   2065
2    642L    M    red  2224.21   1789
3    231I    S    red  8137.09   1519
4    551D    S   blue  9303.51    132
..    ...  ...    ...      ...    ...
995  530W   XL  black  4792.29    948
996  921V    M  white  6985.76   1266
997  119Q    M    red  8022.32   1008
998  703T    M   blue   853.45   2338
999  233U   XL  white  6272.56   1924

[1000 rows x 5 columns]